Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra.
نویسندگان
چکیده
The cellular and matrix cues that induce stem cell differentiation into distinct cell lineages must be identified to permit the ex vivo expansion of desired cell populations for clinical applications. Combinatorial biomaterials enable screening multiple different microenvironments while using small numbers of rare stem cells. New methods to identify the phenotypes of individual cells in cocultures with location specificity would increase the efficiency and throughput of these screening platforms. Here, we demonstrate that partial least-squares discriminant analysis (PLS-DA) models of calibration Raman spectra from cells in pure cultures can be used to identify the lineages of individual cells in more complex culture environments. The calibration Raman spectra were collected from individual cells of four different lineages, and a PLS-DA model that captured the Raman spectral profiles characteristic of each cell line was created. The application of these models to Raman spectra from test sets of cells indicated individual, fixed and living cells in separate monocultures, as well as those in more complex culture environments, such as cocultures, could be identified with low error. Cells from populations with very similar biochemistries could also be identified with high accuracy. We show that these identifications are based on reproducible cell-related spectral features, and not spectral contributions from the culture environment. This work demonstrates that PLS-DA of Raman spectra acquired from pure monocultures provides an objective, noninvasive, and label-free approach for accurately identifying the lineages of individual, living cells in more complex coculture environments.
منابع مشابه
Optimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملRaman Spectroscopic Characterization of Hepatic Differentiation of Mesenchymal Stem Cells
Background and Aims: Mesenchymal stem cells (MSCs) are a preferred cell source for the generation of hepatocyte-like cells in regenerative medicine. They can be isolated from different sources, including adipose tissues. The Raman spectroscopy approach was evaluated for quick and efficient identification of MSCs differentiation status and a broader perspective on cell differentiation. Material...
متن کاملDetection and Characterization of Human Teeth Caries Using 2D Correlation Raman Spectroscopy
Background: Carious lesions are formed by a complex process of chemical interaction between dental enamel and its environment. They can cause cavities and pain, and are expensive to fix. It is hard to characterize in vivo as a result of environment factors and remineralization by ions in the oral cavity. Objectives: The development of a technique that gives early diagnosis which is non-invasi...
متن کاملSpectroscopy, Structural, and Optical Investigations of NiFe2O4 Ferrite
Ni ferrite crystalline material is synthesized using a sol-gel method at two different temperatures. The vibrational and stretching modes, crystalline phase, size distribution and morphology of the products are investigated via Raman back-scattering and Fourier transform infrared (FTIR) spectroscopy, XRD and FESEM, respectively. Vibrational modes of spinel ferrite are observed at Raman and FTIR...
متن کاملFT-Raman Spectra of Saffron (Crocus Stivus L.); A Possible Method for Standardization of Saffron
FT-Raman Spectra of Saffron (crocus sativus L.) with a partial assignment is reported. Based on the Raman data, it is concluded that main pigments in saffron are crocins and crocetin. It is proposed that the quickly attainable FT-Raman spectrum of solid saffron, may be used as a means of saffron standardization.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Analyst
دوره 139 9 شماره
صفحات -
تاریخ انتشار 2014